99 research outputs found

    Cisplatin anti-tumour potentiation by tirapazamine results from a hypoxia-dependent cellular sensitization to cisplatin

    Get PDF
    Tirapazamine (TPZ) is a new anticancer drug that is activated specifically at the low oxygen level typically found in solid tumours. It exhibits preferential cytotoxicity towards hypoxic cells and has been shown in preclinical studies with transplanted tumours and in phase II and III clinical trials to potentiate the anti-tumour efficacy of cisplatin without increasing its systemic toxicity. At present, the mechanism for this potentiation is unknown. Here we show that there is a schedule-dependent enhancement of cisplatin cytotoxicity by TPZ for cells in vitro that is similar to that seen with transplanted murine tumours. This cisplatin potentiation depends on the TPZ exposure being at oxygen concentrations below 1%, which are typical of many cells in tumours but not in normal tissues. Also, the interaction between TPZ and cisplatin does not occur in cells mutant in ERCC4, a protein essential for repair of DNA interstrand cross-links. Incubation of the cells with TPZ under hypoxia prior to cisplatin treatment increases cisplatin-induced DNA interstrand cross-links with kinetics suggesting that TPZ inhibits or delays repair of the DNA cross-links. In conclusion, we show that the tumour-specific potentiation of cisplatin cytotoxicity is likely the result of an interaction between TPZ and cisplatin at the cellular level that requires the low oxygen levels typical of those in solid tumours. The mechanism of the interaction appears to be through a potentiation of cisplatin-induced DNA interstrand cross-links, possibly as a result of a diminished or delayed repair of these lesion

    Label-free integrative pharmacology on-target of drugs at the β2-adrenergic receptor

    Get PDF
    We describe a label-free integrative pharmacology on-target (iPOT) method to assess the pharmacology of drugs at the β2-adrenergic receptor. This method combines dynamic mass redistribution (DMR) assays using an array of probe molecule-hijacked cells with similarity analysis. The whole cell DMR assays track cell system-based, ligand-directed, and kinetics-dependent biased activities of the drugs, and translates their on-target pharmacology into numerical descriptors which are subject to similarity analysis. We demonstrate that the approach establishes an effective link between the label-free pharmacology and in vivo therapeutic indications of drugs

    Structural Analysis of Papain-Like NlpC/P60 Superfamily Enzymes with a Circularly Permuted Topology Reveals Potential Lipid Binding Sites

    Get PDF
    NlpC/P60 superfamily papain-like enzymes play important roles in all kingdoms of life. Two members of this superfamily, LRAT-like and YaeF/YiiX-like families, were predicted to contain a catalytic domain that is circularly permuted such that the catalytic cysteine is located near the C-terminus, instead of at the N-terminus. These permuted enzymes are widespread in virus, pathogenic bacteria, and eukaryotes. We determined the crystal structure of a member of the YaeF/YiiX-like family from Bacillus cereus in complex with lysine. The structure, which adopts a ligand-induced, “closed” conformation, confirms the circular permutation of catalytic residues. A comparative analysis of other related protein structures within the NlpC/P60 superfamily is presented. Permutated NlpC/P60 enzymes contain a similar conserved core and arrangement of catalytic residues, including a Cys/His-containing triad and an additional conserved tyrosine. More surprisingly, permuted enzymes have a hydrophobic S1 binding pocket that is distinct from previously characterized enzymes in the family, indicative of novel substrate specificity. Further analysis of a structural homolog, YiiX (PDB 2if6) identified a fatty acid in the conserved hydrophobic pocket, thus providing additional insights into possible function of these novel enzymes

    Applying an Empirical Hydropathic Forcefield in Refinement May Improve Low-Resolution Protein X-Ray Crystal Structures

    Get PDF
    BACKGROUND: The quality of X-ray crystallographic models for biomacromolecules refined from data obtained at high-resolution is assured by the data itself. However, at low-resolution, >3.0 Å, additional information is supplied by a forcefield coupled with an associated refinement protocol. These resulting structures are often of lower quality and thus unsuitable for downstream activities like structure-based drug discovery. METHODOLOGY: An X-ray crystallography refinement protocol that enhances standard methodology by incorporating energy terms from the HINT (Hydropathic INTeractions) empirical forcefield is described. This protocol was tested by refining synthetic low-resolution structural data derived from 25 diverse high-resolution structures, and referencing the resulting models to these structures. The models were also evaluated with global structural quality metrics, e.g., Ramachandran score and MolProbity clashscore. Three additional structures, for which only low-resolution data are available, were also re-refined with this methodology. RESULTS: The enhanced refinement protocol is most beneficial for reflection data at resolutions of 3.0 Å or worse. At the low-resolution limit, ≥4.0 Å, the new protocol generated models with Cα positions that have RMSDs that are 0.18 Å more similar to the reference high-resolution structure, Ramachandran scores improved by 13%, and clashscores improved by 51%, all in comparison to models generated with the standard refinement protocol. The hydropathic forcefield terms are at least as effective as Coulombic electrostatic terms in maintaining polar interaction networks, and significantly more effective in maintaining hydrophobic networks, as synthetic resolution is decremented. Even at resolutions ≥4.0 Å, these latter networks are generally native-like, as measured with a hydropathic interactions scoring tool

    How to do an evaluation: pitfalls and traps

    Get PDF
    The recent literature is replete with papers evaluating computational tools (often those operating on 3D structures) for their performance in a certain set of tasks. Most commonly these papers compare a number of docking tools for their performance in cognate re-docking (pose prediction) and/or virtual screening. Related papers have been published on ligand-based tools: pose prediction by conformer generators and virtual screening using a variety of ligand-based approaches. The reliability of these comparisons is critically affected by a number of factors usually ignored by the authors, including bias in the datasets used in virtual screening, the metrics used to assess performance in virtual screening and pose prediction and errors in crystal structures used

    How to do an evaluation: pitfalls and traps

    Get PDF
    The recent literature is replete with papers evaluating computational tools (often those operating on 3D structures) for their performance in a certain set of tasks. Most commonly these papers compare a number of docking tools for their performance in cognate re-docking (pose prediction) and/or virtual screening. Related papers have been published on ligand-based tools: pose prediction by conformer generators and virtual screening using a variety of ligand-based approaches. The reliability of these comparisons is critically affected by a number of factors usually ignored by the authors, including bias in the datasets used in virtual screening, the metrics used to assess performance in virtual screening and pose prediction and errors in crystal structures used

    Genome-culture coevolution promotes rapid divergence of killer whale ecotypes.

    Get PDF
    Analysing population genomic data from killer whale ecotypes, which we estimate have globally radiated within less than 250,000 years, we show that genetic structuring including the segregation of potentially functional alleles is associated with socially inherited ecological niche. Reconstruction of ancestral demographic history revealed bottlenecks during founder events, likely promoting ecological divergence and genetic drift resulting in a wide range of genome-wide differentiation between pairs of allopatric and sympatric ecotypes. Functional enrichment analyses provided evidence for regional genomic divergence associated with habitat, dietary preferences and post-zygotic reproductive isolation. Our findings are consistent with expansion of small founder groups into novel niches by an initial plastic behavioural response, perpetuated by social learning imposing an altered natural selection regime. The study constitutes an important step towards an understanding of the complex interaction between demographic history, culture, ecological adaptation and evolution at the genomic level

    Lifestyle and socio-demographic factors associated with high-risk HPV infection in UK women

    Get PDF
    The world age-standardised prevalence of high-risk HPV (hrHPV) infection among 5038 UK women aged 20–59 years, with a low-grade smear during 1999–2002, assessed for eligibility for TOMBOLA (Trial Of Management of Borderline and Other Low-grade Abnormal smears) was 34.2%. High-risk HPV prevalence decreased with increasing age, from 61% at ages 20–24 years to 14–15% in those over 50 years. The age-standardised prevalence was 15.1, 30.7 and 52.7%, respectively, in women with a current normal, borderline nuclear abnormalities (BNA) and mild smear. In overall multivariate analyses, tertiary education, previous pregnancy and childbirth were associated with reduced hrHPV infection risk. Risk of infection was increased in non-white women, women not married/cohabiting, hormonal contraceptives users and current smokers. In stratified analyses, current smear status and age remained associated with hrHPV infection. Data of this type are relevant to the debate on human papillomavirus (HPV) testing in screening and development of HPV vaccination programmes

    Structure and Function of the First Full-Length Murein Peptide Ligase (Mpl) Cell Wall Recycling Protein

    Get PDF
    Bacterial cell walls contain peptidoglycan, an essential polymer made by enzymes in the Mur pathway. These proteins are specific to bacteria, which make them targets for drug discovery. MurC, MurD, MurE and MurF catalyze the synthesis of the peptidoglycan precursor UDP-N-acetylmuramoyl-L-alanyl-γ-D-glutamyl-meso-diaminopimelyl-D-alanyl-D-alanine by the sequential addition of amino acids onto UDP-N-acetylmuramic acid (UDP-MurNAc). MurC-F enzymes have been extensively studied by biochemistry and X-ray crystallography. In Gram-negative bacteria, ∼30–60% of the bacterial cell wall is recycled during each generation. Part of this recycling process involves the murein peptide ligase (Mpl), which attaches the breakdown product, the tripeptide L-alanyl-γ-D-glutamyl-meso-diaminopimelate, to UDP-MurNAc. We present the crystal structure at 1.65 Å resolution of a full-length Mpl from the permafrost bacterium Psychrobacter arcticus 273-4 (PaMpl). Although the Mpl structure has similarities to Mur enzymes, it has unique sequence and structure features that are likely related to its role in cell wall recycling, a function that differentiates it from the MurC-F enzymes. We have analyzed the sequence-structure relationships that are unique to Mpl proteins and compared them to MurC-F ligases. We have also characterized the biochemical properties of this enzyme (optimal temperature, pH and magnesium binding profiles and kinetic parameters). Although the structure does not contain any bound substrates, we have identified ∼30 residues that are likely to be important for recognition of the tripeptide and UDP-MurNAc substrates, as well as features that are unique to Psychrobacter Mpl proteins. These results provide the basis for future mutational studies for more extensive function characterization of the Mpl sequence-structure relationships
    corecore